High Dimensional Robust
Sparse Regression

Liu Liu Yanyao Shen TianyangLi  Constantine Caramanis
The University of Texas at Austin

December, 2020



Introduction

m Large-scale statistical problems: both the dimension d and the
sample size n may be large (possibly n < d).

m Low dimensional structures in the high dimensional setting.
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Introduction

m Large-scale statistical problems: both the dimension d and the
sample size n may be large (possibly n < d).

m Low dimensional structures in the high dimensional setting.

m Many examples of this:
m Sparse regression.
m Low rank matrix completion.
m Low rank + sparse matrix decomposition.
m efc...



Motivation

Well known that most state of the art approaches for these problems
are fragile.

m Typically need very light tails.

m Data must be pristine: A single corrupted sample can arbitrarily
corrupt the original maximum likelihood estimation.
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Problem setup: robust estimation for sparse regression

Sparse regression model:
m dimensions: n < d.
m iid Gaussian X.
my=x'8"+¢.
m noise: & ~ N (0, o2).
m 3* € R%is k-sparse.

Contamination model:
m we observe z; = (y;, X;).

P: sparse regression model .

[ |
[ |
m Q: arbitrary distribution.
[ |

€: const fraction of outliers.

{z1,--+ ,zn} ~ (1 —€)P +€Q.
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m dimensions: n K d.
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m noise: & ~ N (0, 02).
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€: const fraction of outliers.
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Related work

Robust regression
m [Li13][BJK15][DT19]: robust regression with corruptions only in y.

m [KKM18] [PSBR18] [DKK™ 18] [DKS19]: low dimensional linear
regression with corruptions in x and y, n = Q(d) and ¢ = const.

m [CCM13] [LLC19]: robust sparse regression resilient to
corruptions in x and y, with e = O(1/V/k).

Robust mean estimation
m [LRV16] [DKK™16]: robust mean estimation with ¢ = const,
n = Q(d).
m [BDLS17]: robust sparse mean estimation with ¢ = const,
n = Q(k?log(d)). 2 This is based on the ellipsoid algorithm in
[DKK*16].

3DKS16]: statistical query-based L.b. of Q(k?) on rob. sparse mean estimation.




Estimation tasks for robust sparse regression

Problem: e-corrupted samples from robust sparse regression model,
can we recover 3*?
m [CCM13]: corruptions in x and y, but cannot deal with constant e.
m [Gao17, LM16, LL*20] show the minimax rate O(ec), but only
provides exponential-time algorithm.
m [BDLS17] has sub-optimal rates depending on ||3*||,.
m [KKM18] [PSBR18] [DKK™ 18] [DKS19]: recent advances in
robust regression, but require at least n = Q(d).
m [Li13][BJK15][DT19]: corruptions only in y.



Our approach

Algorithmic idea:

Iterative Hard Thresholding
+

Robust Sparse Mean Estimation on gradients
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Our approach

Algorithmic idea:

Iterative Hard Thresholding
+

Robust Sparse Mean Estimation on gradients

Required ingredients:
m Robust Sparse Mean Estimation

m Stability of IHT
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This work

m Meta-Theorem: stability of IHT. Given any Robust Sparse Mean
Estimation sub-procedure, IHT has controlled error.

m We provide order-wise faster Robust Sparse Mean Estimation
algorithm based on filtering, which is scalable and practical.

m With the ellipsoid algorithm, we have optimal rate of convergence.

m With the faster filtering algorithm, we can deal with unknown but
sparse covariance matrix. Exact recovery when € or o goes to
zero.
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lterative Hard Thresholding

We look at the gradient part of uncorrupted IHT:
1 n

Bt—H = Pk(lat n zg})v
=

where gf = x;(x;” 3! — y;) is gradient of the " sample (y;, X;).
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where gf = x;(x;” 3! — y;) is gradient of the " sample (y;, X;).
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lterative Hard Thresholding

We look at the gradient part of uncorrupted IHT:
1 n

Bt—H = Pk(lat n zg})v
=

where gf = x;(x;” 3! — y;) is gradient of the " sample (y;, X;).
If X = Iy, E(g;) is guaranteed to be 2k-sparse:
Ep(gf) = Ep(xix;" (' — %)) = B' — 8" = G".

When {y;, x;}7_, come from (1 — €)P + €Q, we can use robust sparse
mean estimation on G!, and then use inexact IHT.
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Robust Sparse Gradient Estimator (RSGE)

Definition 1 (RSGE)
We call &(ﬂ) a v (¢)-RSGE, if given {g;}/;, a‘(ﬂ) guarantees

G(8) - GB)| <alGWBIE+v (),
| |,

with high probability, where « € (0, 0.1) is a constant.
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Robust Sparse Gradient Estimator (RSGE)

Definition 1 (RSGE)
We call (A;(ﬂ) a v (¢)-RSGE, if given {g;}/;, a‘(ﬁ) guarantees

G(8) - GB)| <alGWBIE+v (),
| |,

with high probability, where « € (0, 0.1) is a constant.

Theorem 1 (Thm. 2.1 in our paper)

IHT is stable. In particular, using an v (¢)-RSGE as defined in
Definition 1, IHT outputs 3, such that

Hé_ﬁ* 220(\/m)’

with high probability.




Robust sparse regression with corrupted gradients

@ g RN 2

10:

Algorithm 1: Robust sparse regression by RSGE

Input: Data samples {y;, x;}"Y_,, RSGE subroutine.
Output: The estimation ﬁ
Split samples into T subsets of size n.
Initialize with 3° = 0.
fort=0to T —1,do
At current 31, calculate all gradients:

9/ =x (X,-TB’ — Yi) i€ [n).

We use a RSGE to get G'.

gt = p, (Bt _ ar> ‘
end for R
Output the estimation 3 = 37.
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How to design RSGE?

Theorem 2 (RSGE by ellipsoid algorithm in [BDLS17], Cor. 3.1 in
our paper)

With n > Q(@), we can guarantee

IG' — G| = O(2||G|3 + 252).

Theorem 3

Combining Theorem 2 with Theorem 1, we have || 8- B |2 = O(eo).
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How to design RSGE?

Theorem 2 (RSGE by ellipsoid algorithm in [BDLS17], Cor. 3.1 in
our paper)

With n > Q(@), we can guarantee

IG' — G| = O(2||G|3 + 252).

Theorem 3

Combining Theorem 2 with Theorem 1, we have || B-p" |2 = O(eo).

m This algorithm’s time complexity is polynomial.

m However, it cannot handle unknown covariance.
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How to design RSGE?

We provide a new, faster filtering algorithm.
Theorem 4 (RSGE by filtering algorithm, Cor. 4.1 in our paper)

With n > Q(*€'%¢9) we can guarantee

IG' — G'|% = O(e|| G!|3 + o).

Theorem 5

Combining Theorem 1 and Theorem 4, we have || 8- B*|l2 = O(y/eo).

m The new filtering algorithm is orderwise faster, at the expense of
\/€ rather than e in the guarantee.

m This new filtering algorithm also works for unknown yet sparse
covariance matrix.
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Experimental results |: robust sparse mean estimation

We generate authentic samples through g; = x,-x,-TG, where G is

k-sparse. The rescaled relative MSE: ||G — G||3/(¢||G||3) should be
independent of the parameters {¢, k, d}.
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(a) Rescaled relative MSE vs. sparsity. (b) Rescaled relative MSE vs. dimension.

Figure: Sample complexity n o< k? log(d)/e. Different curves for ¢ € {0.1,0.15,0.2}
are the average of 15 trials.
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Experimental results Il: robust sparse regression

We use filtering algorithm as our RSGE, and generate authentic
samples y; = x,-Tﬁ* + &;. As expected, the convergence is linear, and
flattens out at the level of the final error.
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(a) log(||B" — ﬁ*H;) vs. iterates. (b) log(||B" — B*Hz) vs. iterates.

Figure: In all cases, we fix k = 5, d = 500, and choose the sample complexity
n x 1/e. (2a) has fixed 0% = 0.1. (2b) has fixed e = 0.1.
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Experimental results Ill: Large scale experiments

The wall clock time vs. the sample size or the dimensionality.
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Figure: In both plots, we use ¢ = 0.1. In the left plot, we fix d = 500 and in the right
plot, we fix n = 1000.

16/22



Other Important Directions

m What if the gradients are not sparse? For example: for general
(non-sparse, non-identity) covariance.

m Then RSGE cannot be used! It is too much to ask for

|&w) -am;

2

to be small.

m Different tools/ideas are needed. For some results along these
lines, see: https://arxiv.org/abs/1901.08237
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https://arxiv.org/abs/1901.08237

Our contribution

m Sparse regression algorithm that is resilient to a constant fraction
of arbitrary outliers. Our algorithm requires n = Q(k? log d)
samples.

“[Gao17]: this error rate is minimax optimal under the e-contamination model.
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Our contribution

m Sparse regression algorithm that is resilient to a constant fraction
of arbitrary outliers. Our algorithm requires n = Q(k? log d)
samples.

m Meta-theorem which allows the use of any robust sparse mean
estimation subroutine:

m By ellipsoid algorithm in [BDLS17], we can recover 3* within
additive error O(eo ).

m Efficient filtering algorithm for robust sparse mean estimation.

m By this algorithm, we can recover 3* within additive error O(y/ec).
m The filtering algorithm is practical and faster by at least o?.

m In particular: exact recovery as o — 0.

“[Gao17]: this error rate is minimax optimal under the e-contamination model.
18/22



For more information please refer to our paper

Liu Liu, Yanyao Shen, Tianyang Li, Constantine Caramanis.
High Dimensional Robust Sparse Regression.
https://arxiv.org/abs/1805.11643
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