
High Dimensional Robust
Sparse Regression

Liu Liu Yanyao Shen Tianyang Li Constantine Caramanis

The University of Texas at Austin

December, 2020

1 / 22



Introduction

Large-scale statistical problems: both the dimension d and the
sample size n may be large (possibly n� d).

Low dimensional structures in the high dimensional setting.

Many examples of this:
Sparse regression.
Low rank matrix completion.
Low rank + sparse matrix decomposition.
etc...
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Motivation

Well known that most state of the art approaches for these problems
are fragile.

Typically need very light tails.

Data must be pristine: A single corrupted sample can arbitrarily
corrupt the original maximum likelihood estimation.
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Problem setup: robust estimation for sparse regression

Sparse regression model:
dimensions: n� d .

iid Gaussian X .

yi = xi
Tβ∗ + ξi .

noise: ξi ∼ N (0, σ2).

β∗ ∈ Rd is k -sparse.

Contamination model:
we observe zi = (yi , xi).

{z1, · · · , zn} ∼ (1− ε)P + εQ.

P: sparse regression model .

Q: arbitrary distribution.

ε: const fraction of outliers.
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Related work

Robust regression
[Li13][BJK15][DT19]: robust regression with corruptions only in y .

[KKM18] [PSBR18] [DKK+18] [DKS19]: low dimensional linear
regression with corruptions in x and y , n = Ω(d) and ε = const.

[CCM13] [LLC19]: robust sparse regression resilient to
corruptions in x and y , with ε = O(1/

√
k).

Robust mean estimation
[LRV16] [DKK+16]: robust mean estimation with ε = const,
n = Ω(d).

[BDLS17]: robust sparse mean estimation with ε = const,
n = Ω(k2 log(d)). a This is based on the ellipsoid algorithm in
[DKK+16].

a[DKS16]: statistical query-based l.b. of Ω(k2) on rob. sparse mean estimation.

5 / 22



Estimation tasks for robust sparse regression

Problem: ε-corrupted samples from robust sparse regression model,
can we recover β∗?

[CCM13]: corruptions in x and y , but cannot deal with constant ε.

[Gao17, LM16, LL+20] show the minimax rate O(εσ), but only
provides exponential-time algorithm.

[BDLS17] has sub-optimal rates depending on ‖β∗‖2.

[KKM18] [PSBR18] [DKK+18] [DKS19]: recent advances in
robust regression, but require at least n = Ω(d).

[Li13][BJK15][DT19]: corruptions only in y .
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Our approach

Algorithmic idea:

Iterative Hard Thresholding

+

Robust Sparse Mean Estimation on gradients

Required ingredients:
Robust Sparse Mean Estimation

Stability of IHT
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This work

Meta-Theorem: stability of IHT. Given any Robust Sparse Mean
Estimation sub-procedure, IHT has controlled error.

We provide order-wise faster Robust Sparse Mean Estimation
algorithm based on filtering, which is scalable and practical.

With the ellipsoid algorithm, we have optimal rate of convergence.

With the faster filtering algorithm, we can deal with unknown but
sparse covariance matrix. Exact recovery when ε or σ goes to
zero.
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Iterative Hard Thresholding

We look at the gradient part of uncorrupted IHT:

βt+1 = Pk (βt − 1
n

n∑
i=1

gt
i ),

where gt
i = xi(xi

Tβt − yi) is gradient of the i th sample (yi , xi).

If Σ = Id , E(gi) is guaranteed to be 2k -sparse:

EP(gt
i ) = EP(xixi

T (βt − β∗)) = βt − β∗ = Gt .

When {yi , xi}n
i=1 come from (1− ε)P + εQ, we can use robust sparse

mean estimation on Gt , and then use inexact IHT.
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Robust Sparse Gradient Estimator (RSGE)

Definition 1 (RSGE)

We call Ĝ (β) a ψ (ε)-RSGE, if given {gi}n
i=1, Ĝ (β) guarantees∥∥∥Ĝ (β)− G (β)

∥∥∥2

2
≤ α ‖G (β)‖2

2 + ψ (ε) ,

with high probability, where α ∈ (0, 0.1) is a constant.

Theorem 1 (Thm. 2.1 in our paper)

IHT is stable. In particular, using an ψ (ε)-RSGE as defined in
Definition 1, IHT outputs β̂, such that∥∥∥β̂ − β∗

∥∥∥
2

= O
(√

ψ (ε)
)
,

with high probability.
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Robust sparse regression with corrupted gradients

Algorithm 1: Robust sparse regression by RSGE

1: Input: Data samples {yi , xi}N
i=1, RSGE subroutine.

2: Output: The estimation β̂
3: Split samples into T subsets of size n.
4: Initialize with β0 = 0.
5: for t = 0 to T − 1, do
6: At current βt , calculate all gradients:

gt
i = xi

(
x>i βt − yi

)
, i ∈ [n].

7: We use a RSGE to get Ĝt .
8: βt+1 = Pk

(
βt − Ĝt

)
.

9: end for
10: Output the estimation β̂ = βT .
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How to design RSGE?

Theorem 2 (RSGE by ellipsoid algorithm in [BDLS17], Cor. 3.1 in
our paper)

With n ≥ Ω( k2 log d
ε2 ), we can guarantee

‖Ĝt − Gt‖2
2 = O(ε2‖Gt‖2

2 + ε2σ2).

Theorem 3

Combining Theorem 2 with Theorem 1, we have ‖β̂ − β∗‖2 = O(εσ).

This algorithm’s time complexity is polynomial.

However, it cannot handle unknown covariance.
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How to design RSGE?
We provide a new, faster filtering algorithm.

Theorem 4 (RSGE by filtering algorithm, Cor. 4.1 in our paper)

With n ≥ Ω( k2 log d
ε ), we can guarantee

‖Ĝt − Gt‖2
2 = O(ε‖Gt‖2

2 + εσ2).

Theorem 5

Combining Theorem 1 and Theorem 4, we have ‖β̂−β∗‖2 = O(
√
εσ).

The new filtering algorithm is orderwise faster, at the expense of√
ε rather than ε in the guarantee.

This new filtering algorithm also works for unknown yet sparse
covariance matrix.
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Experimental results I: robust sparse mean estimation
We generate authentic samples through gi = xix>i G, where G is
k -sparse. The rescaled relative MSE: ‖Ĝ − G‖2

2/(ε ‖G‖2
2) should be

independent of the parameters {ε, k , d}.
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Figure: Sample complexity n ∝ k2 log(d)/ε. Different curves for ε ∈ {0.1, 0.15, 0.2}
are the average of 15 trials.
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Experimental results II: robust sparse regression

We use filtering algorithm as our RSGE, and generate authentic
samples yi = x>i β∗ + ξi . As expected, the convergence is linear, and
flattens out at the level of the final error.

Iterations
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Figure: In all cases, we fix k = 5, d = 500, and choose the sample complexity
n ∝ 1/ε. (2a) has fixed σ2 = 0.1. (2b) has fixed ε = 0.1.
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Experimental results III: Large scale experiments

The wall clock time vs. the sample size or the dimensionality.
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Figure: In both plots, we use ε = 0.1. In the left plot, we fix d = 500 and in the right
plot, we fix n = 1000.
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Other Important Directions

What if the gradients are not sparse? For example: for general
(non-sparse, non-identity) covariance.

Then RSGE cannot be used! It is too much to ask for∥∥∥Ĝ (β)− G (β)
∥∥∥2

2

to be small.

Different tools/ideas are needed. For some results along these
lines, see: https://arxiv.org/abs/1901.08237
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Our contribution

Sparse regression algorithm that is resilient to a constant fraction
of arbitrary outliers. Our algorithm requires n = Ω(k2 log d)
samples.

Meta-theorem which allows the use of any robust sparse mean
estimation subroutine:

By ellipsoid algorithm in [BDLS17], we can recover β∗ within
additive error O(εσ).*

Efficient filtering algorithm for robust sparse mean estimation.
By this algorithm, we can recover β∗ within additive error O(

√
εσ).

The filtering algorithm is practical and faster by at least d2.

In particular: exact recovery as σ → 0.

*[Gao17]: this error rate is minimax optimal under the ε-contamination model.
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For more information please refer to our paper

Liu Liu, Yanyao Shen, Tianyang Li, Constantine Caramanis.
High Dimensional Robust Sparse Regression.
https://arxiv.org/abs/1805.11643
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