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Problem setup: robust estimation for sparse regression

Sparse regression model:

I dimensions: n� d .

I iid Gaussian X : Σ = Id .

I yi = xi Tβ∗ + ξi .

I noise: ξi ∼ N (0, σ2).

I β∗ ∈ Rd is k-sparse.

Contamination model:

I We observe zi = (yi , xi ).

I {z1, · · · , zn} ∼ (1− ε)P + εQ.

I P: sparse regression model.

I Q: arbitrary distribution.

I ε: const fraction of outliers.
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Approach

Algorithmic idea:

Iterative Hard Thresholding

+

Robust Sparse Mean Estimation on gradients

Robust Sparse Mean Estimation:

Given ε-corrupted set of n samples from a d dimensional Gaussian
N (µ, Id), how can we estimate µ, if µ is k-sparse?

[BDLS17] shows that an efficient algorithm obtains ‖µ̂− µ‖2 ≤ O(ε),
with n = Ω(k2 log d/ε2)∗. This is based on the ellipsoid algorithm in
[DKK+16].

∗[DKS16]: statistical query-based l.b. of Ω(k2) on rob. sparse mean estimation.
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Our contribution

I Sparse regression algorithm that is resilient to a constant fraction
of arbitrary outliers. Our algorithm requires n = Ω(k2 log d)
samples.

I Meta-theorem which allows the use of any robust sparse mean
estimation subroutine:

I By ellipsoid algorithm in [BDLS17], we can recover β∗ within
additive error O(εσ).†But this is computationally expensive.

I Efficient filtering algorithm for robust sparse mean estimation.
I By this algorithm, we can recover β∗ within additive error O(

√
εσ).

I The filtering algorithm is practical and faster by at least d2.

I In particular: exact recovery as σ → 0.

†[Gao17]: this error rate is minimax optimal under the ε-contamination model.
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Experimental results I: robust sparse mean estimation

We generate authentic samples through gi = xix>i G , where G is

k-sparse. The rescaled relative MSE: ‖Ĝ − G‖22/(ε ‖G‖22) should be
independent of the parameters {ε, k , d}.
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(a) Rescaled relative MSE vs. sparsity.
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(b) Rescaled relative MSE vs. dimension.

Figure 1: Sample complexity n ∝ k2 log(d)/ε. Different curves for
ε ∈ {0.1, 0.15, 0.2} are the average of 15 trials.
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Experimental results II: robust sparse regression

We use filtering algorithm as our RSGE, and generate authentic
samples yi = x>i β∗ + ξi . As expected, the convergence is linear, and
flatten out at the level of the final error.

Iterations
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Figure 2: In all cases, we fix k = 5, d = 500, and choose the sample complexity
n ∝ 1/ε. (2a) has fixed σ2 = 0.1. (2b) has fixed ε = 0.1.
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For more information please refer to our paper

Liu Liu, Yanyao Shen, Tianyang Li, Constantine Caramanis.
High Dimensional Robust Sparse Regression.
https://arxiv.org/abs/1805.11643

And please contact me if you have any questions

liuliu@utexas.edu
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